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The diffraction of Kelvin waves at a corner 
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In a uniform rotating liquid of uniform depth, Kelvin waves may be propagated 
in one direction along a straight boundary of the liquid. The Wiener-Hopf 
technique is used to obtain the wave field due to Kelvin waves incident at a right- 
angle corner. An asymptotic solution is obtained for the field far from the corner. 
It is shown that for low frequencies the Kelvin waves are propagated round the 
corner without change of amplitude, but that for high frequencies cylindrical 
waves of the ‘ Poincar6 ’ type are generated at the corner, so that the amplitudes 
of the Kelvin waves propagated round the corner are reduced. 

1. Introduction 
Kelvin waves in a semi-infinite canal have been considered in a paper by Taylor 

(192 l),  in which it is concluded that reflexion of the Kelvin wave at the transverse 
wall is only possible if the width of the canal is less than a certain value, which 
depends on the frequency. Defant (1961) has given an alternative presentation 
of Taylor’s solution. In both cases the solution is in the form of a Fourier series, 
the coefficients of which can only be evaluated by the approximate inversion 
of an infinite matrix. 

In  view of some of the questions raised by the above analyses, it is of some 
theoretical interest to know what happens t o  a Kelvin wave when it reaches a 
right-angle bend in a straight coast line. In  this paper, the device of extending 
the variables to the whole half-plane is used to reduce the problem to the solution 
of a Wiener-Hopf equation. A closed solution is obtained in the form of a Fourier 
integral and expressions are obtained for the amplitudes of the reflected waves 
at a long distance from the corner. It will be shown that, depending on the 
frequency, the Kelvin waves are either propagated round the bend without 
change of amplitude, or, alternatively, they are propagated with reduced 
amplitude, but with the addition of cylindrical waves of the ‘ Poimar6 ’ type 
which radiate from the corner. 

2. The equations of motion and boundary conditions 
Assuming a time factor eiut, the linearized equations of motion of long wavesin 

a sheet of water of uniform depth h, rotating about a vertical axis with angular 
velocity 4 f, are, in rectangular Cartesian co-ordinates, 

13 

(2.1) 

Fluid IIech. 31 
I iou - fv = - gcz, 

iov + fu = - g b ,  
h(u, + VJ + i w c  = 0. 
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In  these equations u(x,  y), v(x, y) are the particle velocities, averaged over the 
depth, in the x, y, directions, respectively, h + cis the depth in the disturbed state, 
and the suffices indicate partial derivatives in the usual way. In  the case of the 
rotating earth, f = 2Q sin 0, where 0 is the latitude, but for the purpose of this 
paper it is reasonable to assume that f is constant. It is also assumed that w has 
small negative imaginary part, so that 

0 = CT-%€, (2 .2 )  

where 0 < B @ CT. This is a common and convenient way in which the radiation 
condition can be applied. The steady-state solution can be obtained afterwards 
by taking 8 to be zero. 

Eliminating u, v, respectively from the first two equations of (2.1), 

where k2 = (w2--f2)/c:, and co = J(gh) is the velocity of long waves when f = 0. 
Using the last of (2.1), 

where V2 = P / a x 2  + P/ay2. The velocities u, v, also satisfy this equation. 
Now suppose that the water is contained by smooth impenetrable barriers 

in the positive quadrant x > 0, y > 0, SO that u(0, y) = 0, and v(x, 0) = 0 are the 
conditions on the boundaries x = 0 and y = 0. Then, as given by Proudman 

(3.5) 

represents a Kelvin wave of ' amplitude ' \ A  1, travelling in the negative direction 
along the y-axis. Note that c0 satisfies (2.4), and that if uo, vo, are the correspond- 
ing particle velocities calculated from (2.3), then 

u.0 = 0, = - g ~ o / ~ o ,  (2.6) 

so that the condition on y = 0 is satisfied. If, therefore, Q is taken as the incident 
Kelvin wave, then we need to fmd the diffracted displacement c1, with correspond- 
ing velocities, ul, vl, such that; 

(a )  u1 = 0 at x = 0, y 2 0, (2.7) 

and ( b )  vo+vl = 0 at y = 0,x  2 0. (2 .8 )  

From (2.7) and (2.4), a 2 n u l / ~ x 2 n  = 0, a t  x = 0, y > 0, for any integer n. Hence 
u1 is an odd function of x, and is analytic and not exponentially unbounded for all 
values of x in the half-plane y > 0. It may be seen from the first of (2.3) that 
Cl = a& + c*, where 6% is analytic and not exponentially unbounded for y > 0, 
[,, is given in (2.5), and a is a constant. Application of the radiation condition 
excludes lo, so that the diffracted wave Cl is an analytic function of x, y, in the 
half-plane y > 0, and is not exponentially large anywhere in this domain. 
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3. The diffracted wave 
Let the diffracted wave be given in the form 

J --co 

The above expression satisfies the differential equation (2.4) if 

s = (P"k2)*. (3.2) 

The function s(/3) given in (3.2) is two-valued, with branch points at /3 = f k. 
For convergence of the integral in (3.1), it is necessary to choose a branch such 
that s - IPI, as /3 +- co. If v > f the branch points and cuts are chosen as in figure 
l a ,  and the chosen branch is the one for which s = i k  when /3 = 0. In  the case 

(a)  (b)  

FIGURE 1. Diagram of cuts in the P-plane, where p = Po + PI, for the cases 
(a )  cr > f, and ( b )  LT < f, respectively. 

v < f, illustrated in figure 1 b,  write k = ik,, where cok, = (f2-w2)J, so that the 
chosen branch is the one for which s = k, at /3 = 0. 

From (2.3) and (3.1) it  may be seen that the boundary condition (2.7) is satis- 
fied if 

(wp-fs) @(/I) dp = 0. SIOY 
Replacing /3 by - /3 in the interval ( - co, 0) this equation may be written in the 
form som [ ( W P - f S )  @(PI - (wP+fs) @( -PI1 e-slI@ = 0, 

so that a sufficient condition for the satisfaction of the boundary condition (2.7) 

W-f4 @(PI = (wP+fs)  W - P ) .  is 

To satisfy the other boundary condition (2.8), let 
(3.3) 
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where 

and 

From (2.8), (2.6) and (2 .5) ,  the boundary condition (2.8) is satisfied for x > 0 if 

V+(P) = B/(P + id ) ,  (3.5) 

where B = igA/Znc, and d = f /co.  In  defining V-(P) as above, the definition of 
q ( x ,  0) has been extended to negative values of x. The function V-(P) has yet 
to be determined, but assuming that wl(x, 0) = O(esx), as x + -a, where 6 > 0 

FIGURE 2. The singularities and strips of analyticity in the P-plane in the case c > f. The 
case u < f is the same, except that the singularities at  j3 = k ,  and the cuts are as in figure 1 b. 

is a constant to be found, V-(P) is analytic for P in the half-plane S-, illustrated 
in figure 2. If P = /3,,+ip1, then S- is the half-plane p1 < 6. It will be shown 
below that 6 = s/co. 

0, then, from ( 2 . 3 ) ,  Assuming that (3.1) defines cl in the whole half-plane y 

hlc2vl(x, y) = i (fp- ws) @(p) e-iJx-svd,!?. Is0 
Hence, putting y = 0 and comparing the integrand with that in (3.4), the relation 

(3.6) hlc2 V(P)  = i ( f P -  u s )  @(P) 
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is obtained. Substitution of (3.6) and (3.5) in (3.3) yields 

197 

it can be shown that G(p) has simple zeros at p = b,, p = b3, and simple poles at 
/3 = b,, /3 = b4. There are also branch points a t  /3 = & k, with cuts as in figure 1. 
With these singularities in mind, noting that I3(k)I > €/Go, and making the as- 
sumption that e < f, it may be inferred from (3.7) that 6 = e/co, so that 8- is the 
half-plane PI < e/co. If S+ denotes the half-plane > - e/co, and S = S+ n S- 
is the strip lpll < e/co, then V-( -p )  is analytic for /3 in Sf, and equation (3.7) 
holds for ,B in the strip IS. [The various singularities and regions are illustrated in 
figure 2 for the case IT > f.] 

Equation (3.7) is of the Wiener-Hopf type, and the function G(p) can be fac- 
torized in the form 

where G+(p) is analytic and non-zero for p in Sf, G-(p) is analytic and non-zero 

G-(P) = ( P - b , )  (P- b3) n YjW7 (3.10) 

G(P) = G+(P)/G-(P), (3.9) 

for pin S-, and 4 

i= 1 

where (3.11) 

with qj(7) = by1  (7 - bj)- l ,  

and $(7) = (7fs)-1cos-1 (7 /k ) ,  (3.12) 

where s = (72- k2)*, and /3* is an arbitrary constant. The function $(p) is multi- 
valued, but if we choose the branch for which $ ( O )  = 1/2ki, then $(p) is analytic 
for p in S-, its only singularity being a branch point at /3 = - k, with an appropri- 
ate cut as in figure 1. Some important particular values of $(P) are given in table 1. 

(9 w >f (ii) W < f  

P @(P) @(P) 
0 1/2ik W k l  

4 c o  - (icO/~f) c0Sh-l (w/cok)  
- 0 b o  
if /Go  

- if/co 

(c0/2nf) [m - 2i sinh-l( W / C ~  kl)] 
( ~ 0 / 2 n f )  [T + 2i sinh-l( W / C O  ki)] 
- ( c , / ~ w )  [ c0Sh-l (f/co k1) +in] 
(colnw) cod- ,  (f/co kl) 

( co/nf) [m + i cosh-l( w/co k ) ]  
- ( c , ~ / ~ R o )  [2  sinh-l (f/cOk) +in] 
(c0/2mw) [2  sinh-l (f/co k )  -in] 

TABLE 1. Some particular values of @(P). In column (i), cosh-' (u/c0k) = sinh-l(f/c,k), 
and in column (ii) co k ,  = (fz - w2)$ ,  so that cosh-l (f/co k,) = sinh-l( w/c0 k,). 

The actual derivation of (3.10) is discussed in appendix A in which some of the 
properties of G-(/3) are also discussed. Two of the properties which should be 

= G-( --PI, (3.13) noted at  this stage are 
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and G-(P) = CP+0(1), 
as /3 --f 00, where C is constant. 

Equation (3.7) can now be rewritten in the form 

B 
[G-(P) - G-( - i d ) ]  - v G+(id) 

B 
G-(P) V-(P) + p+id P-ad 

B B 
= - G+(P) V-( - P )  - P+id G-( - i d )  + P-ad v [G+(P) - G+(id)]. 

(3.14) 

(3.15) 

The left-hand side of (3.15) is analytic for p in S-, the right-hand side is analytic 
for p in S+, and the equation itself holds for p in the strip S. The condition 
that v,(O, 0) is finite implies that V-(P) = O(p-l) as P -+ 00, so that, using (3.14), 
it  is easily seen that both sides of (3.15) are O( 1) as /3 + co. Hence, by the usual 
arguments based on Liouville’s theorem, 

(3.16) 
B B G+(id) D 

V-(P) = - F 
P+zd 

where D is an arbitrary constant. So far, vl(x, 0) has only been determined for 
x > O.Now 

v,(O,O) = IsIy V(P)dP, 

where V(P)  is obtained by taking the sum of (3.5) and (3.16). Replacing the 
integration by a semi-circular contour of large radius R, together with the nega- 
tive residue at the pole P = id ,  it  can be shown that as R --f co, 

vl(0,O) = -gA/co+TDi/C+O(R-l), 

so that D = 0 if the boundary condition a t  the origin is to be satisfied. Hence, 
noting that G+(id) = G-( -id) and using (3.1), (3.5) and (3.6), 

where r is the real axis from -00 to co if E > 0. In  the limit, as x --f 0, I? must 
steer around the singularities as in figure 3 in the case w > f. A similar contour is 
also taken in the case w < f. 

Since s N ]PI, as /3 + co, the integral in (3.17) is uniformly convergent for all 
positive values of y. Moreover, using (3.14), the integrand is O ( , P 3 )  when y = 0, 
as P --f 00. Hence &(x, y) is an analytic function of x ,  y, for all y > 0, and has con- 
tinuous first derivatives with respect to x on y = 0. There is a singularity a t  the 
origin, where the second derivatives of Cl are discontinuous. Substitution in 
(3.4), (2.7) and (2.8) shows that Cl(x,y), as given in (3.17), satisfies the differen- 
tial equation and boundary conditions, differentiation under the integral sign 
being justified by the convergence of the integrals. Since the radiation condition 
is also satisfied, (3.17) necessarily gives the unique solution of the problem 
posed. 
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4. The asymptotic solution 
For given 2, y it is possible in principle to obtain gl(x, y) by quadrature from 

(3.17). However, a general idea of the nature of the diffracted waves may be 
obtained by considering the asymptotic form of cl, for large r = (x2+ y2)*. Let 
x = r cos q5, y = r sin q5, so that 

where R(P) = -i,Bcosr$-ssin#. 

FIGURE 3. Sketch of the singularities and the contour I? in the /?-plane, in the limit as s -+ 0, 
in the case IT > f. In the case IT < f, the cuts are as in figure 1 b, but along the imaginary axis 
whens = 0. 

The constant e has now served its purpose in determining the contour I?, and 
for the remainder of the paper we take e = 0, and the contour I? as in figure 3. 
Now w is real, and assume, first, that w > f .  Consider the transformation 

p = kcosa (4.3) 

which, for w > f ,  maps the cut /I-plane and contour r, illustrated in figure 3, 
.on to the strip 0 < W ( a )  < n-, and the image contour rl, illustrated in figure 4. 
In  the latter figure, the points Bj  ( j  = 1, 2, 3, 4), are the images of the points 

= bj  respectively, while Kl, K,, are the images of p = k, - k, respectively. 
The image of the origin 0 in the /3-plane is at 0,, where a = $n-. 

The transformedexponent in (4.1) is 

Al(a) = A ( ~ c o s ~ )  = -ikcos(a-q5), (4.4) 

so that a saddle-point of A,(a) is given by 

A;(a) = ik sin (a - $) = 0, 

(4.5) when a = $. 
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Noting that A:($) = ik, it  is easily seen that the path of steepest descent through 
the saddle-point makes an angle of Sn with the real axis. If a = ao+ia,, the 
asymptotes of the path of steepest descent are the lines a. = $ k $n, so that the 
path of steepest descent has the form of I?* in figure 4. By the standard formula 
used in the method of steepest descent (see, for instance, Jeffreys & Jeffreys 
1956), the contribution from the saddle-point to the integral is 

6-5.  a o = o  I 5. a+;. n 

FIGURE 4. Image of figure 3 in the a-plane, where p = k cos a, and o > f .  
I'l is the image of I', while I?* is the path of steepest descent. 

When $ = $n, the saddle-point is a t  0,, and rl may be deformed into I?* 
without capturing any of the poles, so that (4.6) gives the complete asymptotic 
solution. As q5 decreases from &n, first the pole a t  B,, and then the pole at  B, 
are captured, so that contributions from the residues a t  both these points 
must be taken into account. However, as can be seen from figure 4, the pole a t  
B, is only captured for small values of $, and by then the contribution from this 
pole is exponentially small compared with c,,. The contribution from the pole 
at B, is - 2ni times the residue a t  B,, which, when simplified, yields 
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For most values of 4, c,, will give the asymptotically dominant displacement. 
However, noting that ell N r-t ,  and ell = 0 when q5 = 0, it is c12 which is impor- 
tant in the neighbourhood of the x-axis, especially as c12 does not diminish with 
distance in the x-direction. 

There is a simple physical explanation for the results in (4.6) and (4.7). The 
displacement cI2 is a reflected Kelvin wave travelling in the positive direction 
along the x-axis with speed co. On the other hand, ell is a cylindrical Poincar6 type 
wave radiating from the origin, and travelling with a phase velocity wlk.  Whilst 
not a consequence of the monochromatic analysis used in this paper, it should be 
noted that the group velocity of the Poincar6 waves is kc:lw, and this would have 

FIGURE 5. Illustrates the incident Kelvin wave Q, the reflected Kelvin wave Cl2, 
and the diffracted cylindrical wave Cll of the Poincar6 type. 

to be taken into account in any discussion of the energy associated with these 
waves. Figure 5 illustrates the physical features associated with the asymptotic 
solution. 

The procedure in the case w < f is much the same as the one above. If k = - ik,, 
where k, = (f2-w2)*, and s = (/32+k:)B, the transformation (4.3) maps the p- 
plane, cut as in figure l b ,  on to the strip 0 < wo < n, illustrated in figure 6 .  
The contour I?,, the image of I?, nearly coincides with the line a. = Qn. The 
saddle-point is at a = q5, as before, but the path of steepest descent I?* is, as 
illustrated, parallel to the imaginary axis. Without going into the actual details, 
it is evident that now 

In  the deformation of the contour from rl to r*, the pole at B, is captured for 
almost all values of 4, while B, can be captured only for 9 = 0, when its contribu- 

c,, - r-*e+r. (4.8) 
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tion is exponentially small compared with the contribution from B,. It is not 
difficult to  show that the formula (4.7) for C12 also applies in this case, so that for 
large distances from the corner there exist only the reflected Kelvin waves 
travelling in the positive direction along the x-axis. 

Arguing on physical grounds, in the case w < f the diffracted Kelvin waves 
must have the same amplitudes as the incident Kelvin waves. It can be shown 
analytically, after some computation, that in this instance 1C12] = (Al ,  con- 
firming that for w < f the incident Kelvin waves travel round the corner without 
changing amplitudes. Some details of this computation are given in appendix B. 

I 
a o = O  4 in n 

FIGURE 6. Image of figure 3 in the a-plane, in the case w <f, so that 
/3 = ik, cos a. The path of steepest descent is denoted by I?*. 

5. Conclusions 
The above calculations have been made for positive f only, that is for a system 

which rotates in the sense q5 increasing. For rotations in the opposite sense, f 
would be negative, and the incident Kelvin wave would have to travel in the 
negative direction along the x-axis, the reflected wave being in the positive y- 
direction. Thus the above results can be extended to negative values off by 
reflexion in the line y = x. 

In  his paper, Taylor (1921) concluded that for fixed w > f ,  Kelvin waves can 
only be reflected in a semi-infinite canal if the width is less than a certain critical 
value. It would appear from the above analysis that since the corners act as 
sources of Poincar6 waves, and because the canal can ac t  as a wave guide for 
these waves, the critical width discovered by Taylor must be the ‘cut-off’ 
width for the canal to act as a wave guide in this way. One would therefore 
expect the Kelvin waves to be totally reflected if the canal width is less than the 
‘ cut-off’ width. However, for greater widths the energy of the incident Kelvin 



The diffraction of Kelvin waves at a corner 203 

waves will be distributed among the reflected Kelvin waves, and all the possible 
modes of the reflected Poincarb waves guided along the canal. 

From the theoretical point of view the combination of Fourier transforms 
with the Wiener-Hopf procedure has proved to be a comparatively simple 
technique for solving the particular problem posed in this paper, especially 
as only elementary functions are used. Examples of other techniques which have 
been used to solve related problems are given by Karp & Karal (1959), Karal, 
Karp, Chu & Kouyoumjian (1961) and Maluzhinets (1958). 

This work was finished during leave of absence which was supported in part 
by a Royal Society and Nuffield Foundation Commonwealth Bursary. I am in- 
debted to Mr J.Crease for some helpful discussions, and to the staff of the 
National Institute of Oceanography, England, for preparation of the typescript 
and figures. 

Appendix A 

Feshbach (1954), Senior (1952), and are discussed by Noble (1958). Let 
Functions of the form G(P), given in (3.8), have been factorized by Heins & 

then 

in the notation of (3.11). The branch of the function 

$(P) = (7fs)-l cos-1 ( P / k )  (A 3) 

for which $ ( O )  = 1/2ki has a singularity at P = - k .  With a suitable cut, $(P) 
is analytic for P in S-, so that $( - /3) is analytic for /3 in S+, and the sum has the 
property that 

Hence it is a simple matter to express H ( P )  in the form 

where 

$(PI + II-( - P )  = 8-l- 

H(P) = H+(P) + H-(P), 

(A 4) 

fo W P )  = H+( - P )  = 1 z: (4 j (P) [$.(P) - $.(bj)l) - (P- U-l- (P- b31-l. (A5) 
co j = 1  

Equations (3.10) to (3.13) follow immediately on integrating and taking the 
exponent. The lower limit of integration p* is arbitrary, giving an arbitrary 
multiplicativeconstantinG-(P). However, this constant cancelsin (3.9) and (3.17), 
and is, therefore, immaterial. 

To obtain the asymptotic form of G-(P), consider the behaviour of H-(P), as 
/3 + co. Noting that $(P) = O(P-llogP), it is easily seen that 

as ,4 -+ 00. Calculating values of $ ( b j )  is rather complicated; the results of the 
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calculations are given in table 1. Moreover, $(bj )  takes different values, depend- 
ing on whether k2 is positive or negative, but, nevertheless, in both cases 

so that H-(P) = -P-'+o(P-'), (A 6) 

as ,l? -+ co. Integrating and taking the exponent of (A 6) gives (3.14), the actual 
magnitude of C depending on the lower limit of integration. 

Appendix B 
In order to evaluate 1<,,1 in the ca'se w < f, first consider 

z = 2, - z,, 

where 

the notation being as in (3.11), with the paths of integration along the negative 
imaginary axis for (B 2) and the positive real axis for (B 3). 

If 7 is real, q1(7) and q2(7) are real, while q3(7) and q4(7) are complex and con- 
jugate. Also, for real 7 and w < f, 

@(7) = is-'- (i/ns) sinh-l ( ~ / k , ) ,  

where k,, and s = (72 + I$)* are real. Also, from table 1, 

9[11.(b,)l = 9 [ W , ) l  = co/2f, 

and 

Hence, recalling formula (A2) for H ( P )  and (3.8) for G(P), and noting that 

(fp- w s ) / ( r  - w/co)  -+ f - w2/f as 7 + w/co, 
we find that 

= & [log [ (T,  + d 2 )  (7 + o/cO) G(7)/(7 - w/c~)]]~'"o 

= log[(w2+f2)/f2]. (B 4) 

If we consider figure 6, we see that on 0, K,, both s and cos-l ( ~ / k )  are real, 
while on the segment K ,  B4 they are both imaginary. Hence y9(7) is purely real 

on the path of integration in (B 2). If we put 7 = -ih, then C qj( -ih) is purely 
4 

i= 1 
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imaginary. From table 1, $(b,) and $(b,) are complex and conjugate, $(6J is 
real, and the imaginary part of $(bJ is - ic,/o. Consequently 

From (4.7), (3.10), (3.11), (B l ) ,  (B 2) and (B 3), when w < j’, 
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